Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Luminous Efficiency of Axial InxGa1-xN/GaN Nanowire Heterostructures: Interplay of Polarization and Surface Potentials

Identifieur interne : 000937 ( Main/Repository ); précédent : 000936; suivant : 000938

Luminous Efficiency of Axial InxGa1-xN/GaN Nanowire Heterostructures: Interplay of Polarization and Surface Potentials

Auteurs : RBID : Pascal:13-0255328

Descripteurs français

English descriptors

Abstract

Using continuum elasticity theory and an eight-band k.p formalism, we study the electronic properties of GaN nanowires with axial InxGa1-xN insertions. The three-dimensional strain distribution in these insertions and the resulting distribution of the polarization fields are fully taken into account. In addition, we consider the presence of a surface potential originating from Fermi level pinning at the sidewall surfaces of the nanowires. Our simulations reveal an in-plane spatial separation of electrons and holes in the case of weak piezoelectric potentials, which correspond to an In content and layer thickness required for emission in the blue and violet spectral range. These results explain the quenching of the photoluminescence intensity experimentally observed for short emission wavelengths. We devise and discuss strategies to overcome this problem.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:13-0255328

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Luminous Efficiency of Axial In
<sub>x</sub>
Ga
<sub>1-x</sub>
N/GaN Nanowire Heterostructures: Interplay of Polarization and Surface Potentials</title>
<author>
<name sortKey="Marquardt, Oliver" uniqKey="Marquardt O">Oliver Marquardt</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>Paul-Drude-Institut für Festkörperelektronik, Hausvogteiplatz 5-7</s1>
<s2>10117 Berlin</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="3">Berlin</region>
<settlement type="city">Berlin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Hauswald, Christian" uniqKey="Hauswald C">Christian Hauswald</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>Paul-Drude-Institut für Festkörperelektronik, Hausvogteiplatz 5-7</s1>
<s2>10117 Berlin</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="3">Berlin</region>
<settlement type="city">Berlin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Wolz, Martin" uniqKey="Wolz M">Martin Wölz</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>Paul-Drude-Institut für Festkörperelektronik, Hausvogteiplatz 5-7</s1>
<s2>10117 Berlin</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="3">Berlin</region>
<settlement type="city">Berlin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Geelhaar, Lutz" uniqKey="Geelhaar L">Lutz Geelhaar</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>Paul-Drude-Institut für Festkörperelektronik, Hausvogteiplatz 5-7</s1>
<s2>10117 Berlin</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="3">Berlin</region>
<settlement type="city">Berlin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Brandt, Oliver" uniqKey="Brandt O">Oliver Brandt</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>Paul-Drude-Institut für Festkörperelektronik, Hausvogteiplatz 5-7</s1>
<s2>10117 Berlin</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="3">Berlin</region>
<settlement type="city">Berlin</settlement>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">13-0255328</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 13-0255328 INIST</idno>
<idno type="RBID">Pascal:13-0255328</idno>
<idno type="wicri:Area/Main/Corpus">000963</idno>
<idno type="wicri:Area/Main/Repository">000937</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">1530-6984</idno>
<title level="j" type="abbreviated">Nano lett. : (Print)</title>
<title level="j" type="main">Nano letters : (Print)</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Continuum</term>
<term>Digital simulation</term>
<term>Elasticity theory</term>
<term>Electronic properties</term>
<term>Electronic structure</term>
<term>Fermi level</term>
<term>Gallium nitride</term>
<term>Heterostructures</term>
<term>III-V compound</term>
<term>III-V semiconductors</term>
<term>Indium nitride</term>
<term>Layer thickness</term>
<term>Mechanical properties</term>
<term>Nanostructured materials</term>
<term>Nanowires</term>
<term>Photoluminescence</term>
<term>Piezoelectric materials</term>
<term>Pinning</term>
<term>Polarization potential</term>
<term>Quenching</term>
<term>Strain distribution</term>
<term>Stress distribution</term>
<term>Surface potential</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Semiconducteur III-V</term>
<term>Composé III-V</term>
<term>Nanofil</term>
<term>Nanomatériau</term>
<term>Hétérostructure</term>
<term>Potentiel polarisation</term>
<term>Potentiel surface</term>
<term>Continuum</term>
<term>Théorie élasticité</term>
<term>Propriété mécanique</term>
<term>Propriété électronique</term>
<term>Distribution contrainte</term>
<term>Champ déformation</term>
<term>Niveau Fermi</term>
<term>Nitrure d'indium</term>
<term>Nitrure de gallium</term>
<term>Structure électronique</term>
<term>Ancrage</term>
<term>Simulation numérique</term>
<term>Matériau piézoélectrique</term>
<term>Epaisseur couche</term>
<term>Trempe</term>
<term>Photoluminescence</term>
<term>InxGa1-xN</term>
<term>GaN</term>
<term>CaSe</term>
<term>8107V</term>
<term>8107B</term>
<term>6225</term>
<term>7321</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Using continuum elasticity theory and an eight-band k.p formalism, we study the electronic properties of GaN nanowires with axial In
<sub>x</sub>
Ga
<sub>1-x</sub>
N insertions. The three-dimensional strain distribution in these insertions and the resulting distribution of the polarization fields are fully taken into account. In addition, we consider the presence of a surface potential originating from Fermi level pinning at the sidewall surfaces of the nanowires. Our simulations reveal an in-plane spatial separation of electrons and holes in the case of weak piezoelectric potentials, which correspond to an In content and layer thickness required for emission in the blue and violet spectral range. These results explain the quenching of the photoluminescence intensity experimentally observed for short emission wavelengths. We devise and discuss strategies to overcome this problem.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1530-6984</s0>
</fA01>
<fA03 i2="1">
<s0>Nano lett. : (Print)</s0>
</fA03>
<fA05>
<s2>13</s2>
</fA05>
<fA06>
<s2>7</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Luminous Efficiency of Axial In
<sub>x</sub>
Ga
<sub>1-x</sub>
N/GaN Nanowire Heterostructures: Interplay of Polarization and Surface Potentials</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>MARQUARDT (Oliver)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>HAUSWALD (Christian)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>WÖLZ (Martin)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>GEELHAAR (Lutz)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>BRANDT (Oliver)</s1>
</fA11>
<fA14 i1="01">
<s1>Paul-Drude-Institut für Festkörperelektronik, Hausvogteiplatz 5-7</s1>
<s2>10117 Berlin</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA20>
<s1>3298-3304</s1>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>27369</s2>
<s5>354000503655690480</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>60 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0255328</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Nano letters : (Print)</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Using continuum elasticity theory and an eight-band k.p formalism, we study the electronic properties of GaN nanowires with axial In
<sub>x</sub>
Ga
<sub>1-x</sub>
N insertions. The three-dimensional strain distribution in these insertions and the resulting distribution of the polarization fields are fully taken into account. In addition, we consider the presence of a surface potential originating from Fermi level pinning at the sidewall surfaces of the nanowires. Our simulations reveal an in-plane spatial separation of electrons and holes in the case of weak piezoelectric potentials, which correspond to an In content and layer thickness required for emission in the blue and violet spectral range. These results explain the quenching of the photoluminescence intensity experimentally observed for short emission wavelengths. We devise and discuss strategies to overcome this problem.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B80A07V</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B80A07B</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B60B25</s0>
</fC02>
<fC02 i1="04" i2="3">
<s0>001B70C21</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Semiconducteur III-V</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>III-V semiconductors</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Composé III-V</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>III-V compound</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Compuesto III-V</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Nanofil</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Nanowires</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Nanomatériau</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Nanostructured materials</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Hétérostructure</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Heterostructures</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Potentiel polarisation</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Polarization potential</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Potencial polarización</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Potentiel surface</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Surface potential</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Continuum</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Continuum</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Continuo</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Théorie élasticité</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Elasticity theory</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Teoría elasticidad</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Propriété mécanique</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Mechanical properties</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Propriété électronique</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Electronic properties</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Propiedad electrónica</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Distribution contrainte</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Stress distribution</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Champ déformation</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Strain distribution</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Campo deformación</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Niveau Fermi</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Fermi level</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Nitrure d'indium</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Indium nitride</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Indio nitruro</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Nitrure de gallium</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Gallium nitride</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Galio nitruro</s0>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Structure électronique</s0>
<s5>29</s5>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Electronic structure</s0>
<s5>29</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Ancrage</s0>
<s5>30</s5>
</fC03>
<fC03 i1="18" i2="3" l="ENG">
<s0>Pinning</s0>
<s5>30</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>Simulation numérique</s0>
<s5>31</s5>
</fC03>
<fC03 i1="19" i2="3" l="ENG">
<s0>Digital simulation</s0>
<s5>31</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>Matériau piézoélectrique</s0>
<s5>32</s5>
</fC03>
<fC03 i1="20" i2="3" l="ENG">
<s0>Piezoelectric materials</s0>
<s5>32</s5>
</fC03>
<fC03 i1="21" i2="X" l="FRE">
<s0>Epaisseur couche</s0>
<s5>33</s5>
</fC03>
<fC03 i1="21" i2="X" l="ENG">
<s0>Layer thickness</s0>
<s5>33</s5>
</fC03>
<fC03 i1="21" i2="X" l="SPA">
<s0>Espesor capa</s0>
<s5>33</s5>
</fC03>
<fC03 i1="22" i2="3" l="FRE">
<s0>Trempe</s0>
<s5>34</s5>
</fC03>
<fC03 i1="22" i2="3" l="ENG">
<s0>Quenching</s0>
<s5>34</s5>
</fC03>
<fC03 i1="23" i2="3" l="FRE">
<s0>Photoluminescence</s0>
<s5>35</s5>
</fC03>
<fC03 i1="23" i2="3" l="ENG">
<s0>Photoluminescence</s0>
<s5>35</s5>
</fC03>
<fC03 i1="24" i2="3" l="FRE">
<s0>InxGa1-xN</s0>
<s4>INC</s4>
<s5>46</s5>
</fC03>
<fC03 i1="25" i2="3" l="FRE">
<s0>GaN</s0>
<s4>INC</s4>
<s5>47</s5>
</fC03>
<fC03 i1="26" i2="3" l="FRE">
<s0>CaSe</s0>
<s4>INC</s4>
<s5>48</s5>
</fC03>
<fC03 i1="27" i2="3" l="FRE">
<s0>8107V</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="28" i2="3" l="FRE">
<s0>8107B</s0>
<s4>INC</s4>
<s5>72</s5>
</fC03>
<fC03 i1="29" i2="3" l="FRE">
<s0>6225</s0>
<s4>INC</s4>
<s5>73</s5>
</fC03>
<fC03 i1="30" i2="3" l="FRE">
<s0>7321</s0>
<s4>INC</s4>
<s5>74</s5>
</fC03>
<fN21>
<s1>245</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000937 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 000937 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:13-0255328
   |texte=   Luminous Efficiency of Axial InxGa1-xN/GaN Nanowire Heterostructures: Interplay of Polarization and Surface Potentials
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024